Tag Archives: Plants

CRISPR/Cas9 in Cannabis – The Future of Genetic Engineering

What is CRISPR?

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is an innovative biotechnology tool based on a natural safety function in bacteria. It uses a protein called Cas9 and a bound RNA (gRNA) with a 17-20 nucleotide sequence to recognize and cut specific segments of DNA. In biotechnology, CRISPR is used as genetic scissors to modify genes and create new functions.

How long has gene modification existed in animals and plants?

Gene modification in animals and plants is not a new technology. The first gene was inserted into a plant cell as early as the 1980s. Since then, the technology has evolved and it has become possible to specifically modify genes to achieve desired traits such as resistance to pests or higher yields.

How does CRISPR work in plants?

CRISPR/Cas9 can be used to selectively cut genes in plants to change specific traits. To do this, the CRISPR/Cas9 system is inserted into the plant cell, where it finds the desired gene and cuts it. A new gene can then be inserted to confer the desired trait. The modification is then transferred to the offspring.

Diagram of CRISPR Process

Source: Crisprtx.com

What companies are already working with CRISPR in the cannabis industry?

A number of companies working in the cannabis sector are already using CRISPR. These include:

  • Ebbu: This company, acquired by Canopy Growth Corp. in 2018, was one of the first to use CRISPR to create single-cannabinoid strains.
  • Sunrise Genetics: In 2018, Sunrise Genetics managed to decode the genome of cannabis.
  • CanBreed: Since 2017, CanBreed, an Israeli genetic seed company, has been part of the cannabis industry. In 2020, it acquired a CRISPR/Cas9 patent, making it the first company to have a CRISPR license in the industry.

How can CRISPR help in terms of cannabis breeding/seeds?

  • Increasing quality: CRISPR can be used to modify certain genes in cannabis plants to increase the concentration of THC or CBD, or to decrease undesirable traits such as odor.
  • Increasing yields: By modifying genes responsible for plant growth and flowering, yields can be increased.
  • Pest resistance: CRISPR can be used to add genes that make plants more resistant to pests and diseases.
  • Improving growing conditions: CRISPR can be used to add genes that allow plants to better cope with adverse climate conditions such as drought or flooding.
  • Standardizing seeds: CRISPR can be used to standardize seeds so that they have consistent traits, making them valuable for farming and growing cannabis plants.

In the cannabis industry, CRISPR thus offers great opportunities to improve the quality and efficiency of cultivation.

Whether the use of CRISPR is “ethically correct” is a matter of debate. But the fact is that the U.S. Department of Agriculture announced in 2018 that it would not regulate CRISPR-modified crops as long as the modifications were made with related plant DNA.

This announcement paved the way for further research and application of CRISPR in agriculture and plant breeding.

In summary, CRISPR/Cas9 is a powerful tool in biotechnology that allows scientists to target and modify genes to create new traits in plants and animals. This has the potential to revolutionize agriculture and plant breeding and improve livelihoods and food security worldwide.

We hunt terpenes: effects, interactions, flavors.

When grandma used to come back from her heath walks with fresh limes from the [...]

Hermaphrodites – origins, implications and what the future holds

Hermaphrodite plants are natural and part of cultivating cannabis, even if it is an uncomfortable [...]

THC, CBD, CBG & CBN: The best-known cannabinoids at a glance

The ingredients of the cannabis plant have fascinated us humans for over 5000 years. Even [...]

Hermaphrodites – origins, implications and what the future holds

Hermaphrodite plants are natural and part of cultivating cannabis, even if it is an uncomfortable topic with many. But is their reputation really that bad?

It has not been scientifically proven that hermaphroditism is a negative trait in cannabis plants. However, it is important to note that hermaphroditism can also have disadvantages, such as passing on faulty DNA sequences, instability or disease.

Ultimately, whether hermaphroditism is considered positive or negative depends on a breeder’s breeding goals and specific requirements.

Origin and reasons of hermaphrodites

It is not to be neglected that if hermaphrodite traits are overlooked in a breeding program, they can become noticeable later. Often hermaphrodite traits are not even present in every generation and can also have many backgrounds.

  • Older gene information from earlier times, when plants were monoecious.

  • Cell division errors due to hormone fluctuations or signal interruptions.

  • Meiosis errors where chromosomes do not divide correctly and faulty pollen grains pollinated the female plant. (Meiosis: “maturity division” – the process by which male and female genes randomly mix in a new generation)

Not every hermaphrodite is the same.

Low Herm: A plant that occasionally produces a banana/pollen sac due to stress, or repeatedly in almost the same place, for example on the lowest shoot.

Median Hermaphrodit
Median Herm: A seed plant which forms several or isolated pollen sacs under each flower or internode (also called leaf axis) in the first run. Clones taken from this plant also show the same characteristics or less, forming only isolated pollen sacs, but no longer on each flower/shoot.

Strong Hermaphrodit
Strong Herm: A plant that obviously develops both sexual characteristics. You can clearly see the formation of male pollen sacs on the top shoot (headbud) and white hairs (also called pistils or stigma, which grow from the calyx) that the female plants form to capture the pollen and ensure their survival.

Those who study cannabis culture in depth will come to similar conclusions. If you take a look at Afghanistan or Pakistan or at the Moroccan fields, you will often find a strongly occurring hermaphrodite in the middle of the field there as well. Often these form all the male pollen sacs on the lower half, which pollinate the upper part of the plant, as it expresses female characteristics there, which capture the pollen and produce new seeds to ensure their survival as mentioned above. This can also be observed in the Strain Hunter episodes from Greenhouse Seeds.

Effects of hermaphrodites

In today’s cannabis world, where it is often all about “bag appeal” or the next hype, it is often forgotten that most strains are strong poly hybrids. These often have such long pedigrees that you have to scroll twice on seedfinder.eu to get to the end.

Of course, we also tried to work with such genetics. Some varieties were stable enough, while others were completely unstable. Here, there were no differences between new high class brands or old breeders. Hermaphrodite plants appeared pretty much everywhere, but also good phenotypes, which had the potential to cultivate them multiple times and create something new with them.

That’s exactly why we keep preaching to get to know your genetics as best as possible before you continue working with them. It often takes several runs, as well as different seasons with different conditions, to find out exactly how stable your genetics are.

The future of hermaphrodites

In the future, so-called “phenohunt(s)” will most likely take place in the lab. This requires only a fraction of a DNA sequence to reproduce the genetic code and the resulting plant. Such DNA sequences can be analyzed for a wide variety of traits such as growth, resistance or taste.

This is also called “marker-assisted breeding” which is a new form of selection.

Marker-assisted breeding (MAB) is a modern method of plant breeding that uses genetic markers to identify and transfer specific traits in plants. It is a more precise and efficient method than traditional breeding and allows breeders to achieve specific traits faster and with higher probability.

MAB is supported by the use of DNA markers that identify specific genes responsible for certain traits such as plant height, yield and disease resistance. Breeders can test plants for these markers to select those that exhibit the desired traits. This speeds up the breeding process and produces higher-quality results.

Undesirable traits or characteristics that have been inherited through previous genetics could be repaired, replaced or even further manipulated through CRISPR/Cas9.

If these topics interest you, feel free to read on here: CRISPR/Cas9 in Cannabis – The Future of Genetic Engineering

Until next time.


What does breeding actually mean?

The aim of plant breeding is the genetic modification of plant populations to improve biological [...]

THC, CBD, CBG & CBN: The best-known cannabinoids at a glance

The ingredients of the cannabis plant have fascinated us humans for over 5000 years. Even [...]

We hunt terpenes: effects, interactions, flavors.

When grandma used to come back from her heath walks with fresh limes from the [...]

What does F1, S1, BX1 & IBL stand for?

“F1”, “IBL”, “BX” and “S1” are terms used in cannabis breeding to describe different generations of cannabis strains. Here are the main differences:


F1 stands for “First Hybrid Generation”. It is the first generation resulting from a cross between two different parent plants. Often F1 hybrid plants show distinct traits of the pollinated mother plant as well as mild to moderately strong traits of the father (pollen donor). This is also referred to as dominant and recessive traits.

If someone then breeds an F2 generation by crossing an F1 Female with an F1 Male from the same batch, the diversity of the different traits and characteristics is already significantly greater. Also disease characteristics from earlier generations become clearly more visible. Therefore, from this point on, it becomes more and more important to select particularly thoroughly. To work your way through generation after generation to the inbred line (IBL), you should have a precise goal in mind, which you are working towards in terms of growth, resistance, taste and effect.

In today’s cannabis world where a lot of crossbreeding is going on and most strains are already hybrids, we always notice that certain breeders keep talking about F1 without having thoroughly analyzed the pedigree of both pairs of parents.

Inside the cannabis bubble a true F1 requires that no identical varieties from previous generations overlap in the pedigree of both pairs of parents. So if the female mother plant and the associated male, both have a Skunk #1 in their curriculum vitae, then this hybrid cross is not F1 genetics!

Outside the cannabis bubble, i.e. in agriculture, which is regulated, we talk about F1 hybrid varieties as soon as a so-called heterosis effect has been achieved. This happens when you have two parent lines, which in the best case do not have the same pedigrees and which have been crossed with themselves about eight times. We are talking about a “Selfing” (Female/Reversed) and not a regular (Male/Female) pollination.

The selfing process (S1) is explained in more detail below.

If this process is repeated up to eight times (S8), both pairs of parents are genetically so far apart that when crossing these two parents, a so-called heterosis effect occurs, which makes the plant appear even larger, stronger and more stable.

See also: CRISPR/Cas9 in Cannabis – The Future of Genetic Engineering


IBL stands for “Inbred Line.” It refers to seeds that come from a stable and inbred line of parent plants. Here, at each generation (F1, F2, F3, etc.), a breeder can select his most appealing female as well as males and cross them with each other to work through generation after generation and enhance certain positive traits and mitigate negative traits, if any. IBL plants show less genetic variability and are usually hardy and robust. It is often referred to as an inbred line (IBL) from the eighth generation (F8) onwards, as this variety has so often been mated with its own siblings, rather than with other genotypes which have a completely different pedigree.

See also: Genotype vs. Phenotype – What’s the difference?

If you want to do a really serious IBL project, you should make sure from the first F1 generation that both parents, or at least one of the two, already comes from a stable inbred line. This at least increases the chance that bad traits have already been bred out of these genetics. Again, sites like seedfinder.eu should be used to research the pedigrees and histories of the individual varieties. Many seed banks nowadays randomly cross two hybrids with each other and throw them on the retail market as “stable F1 genetics”. Whether these genetics are really that stable is debatable. This certainly depends on the breeder and his selection. Poly-hybrid genetics can also have very interesting properties. Some of the best known varieties are even derived from hermaphrodite pollination or so-called bagseeds.

See also: Hermaphrodites – origins, implications and what the future holds


BX stands for “backcross.” It is a method in which a hybrid is crossed with one of its parent plants (the same male that served in the first pollination to create the hybrid) to obtain or improve certain desired traits.

BX seeds usually have a good combination of stability and desired traits.There are a wide variety of backcrossing methods. However, the most popular is as described above, in which the same male plant is taken over and over again and re-matched with a female plant from the first generation or from the already successful backcross to produce new seeds again.

With our Critical Cake (Wedding Cake x Critical Kush) cross, we did two backcrosses. The first was with Critical Cake #1 which in turn was pollinated with the same Critical Kush male as Wedding Cake from which Critical Cake was created. We named the resulting strain Grandma’s OG, as it showed distinct OG characteristic traits for us.

Another backcross was made with our Critical Cake #7. This phenotype showed traits of both parent pairs. It has fast growth, produces beautiful thick flowers that turn purple towards harvest, and has a berry-like cake aroma. Since our goal was to match the flavor of Wedding Cake with the flower growth of Critical Kush, this backcross proved successful and she became our official Critical Cake BX1.


S1 stands for “Selfed” or “Self Pollination”. It is a method in which a specific female phenotype is selected to produce the next generation of seeds. The method of S1 production often involves the use of stress conditions, such as chemical treatments (STS spray) or light manipulation, to induce the plant to develop male sexual characteristics so that it can self-pollinate or another plant that has not been stress treated and thus serves as the recipient of the pollen.

See also: The difference between Regular, Feminist and Automatic Seeds

S1 seeds usually produce only female plants and may also have unique traits that are not present in other generations. However, since these are genetically-manipulated seeds, the number of hermaphrodites could also be increased.

It is important to note that these terms are not standardized and may be used differently from breeder to breeder. Therefore, it is important to carefully study the specific characteristics and properties of hemp seeds before buying them.

CRISPR/Cas9 in Cannabis – The Future of Genetic Engineering

What is CRISPR? CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is an innovative biotechnology tool [...]

Hermaphrodites – origins, implications and what the future holds

Hermaphrodite plants are natural and part of cultivating cannabis, even if it is an uncomfortable [...]

Genotype vs. Phenotype – What’s the difference?

Genotype and phenotype are terms used in genetics and refer to the characteristics of plants. [...]